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Regular and chaotic motion in some quartic potentials 
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Received 8 September 1983 

Abstract. The Hamiltonian Ha ( x ,  y ,  px ,  p , )  = +( p t  + p t  ) + V ,  ( x ,  y )  with 0 s a s 1 and 

V,(X, Y )  =a(.+ Y)4+(X-Y)41-ha(X4+ Y 4 )  

V,(X, y )  = $ x Z y * .  

is integrable for a = 0, and for (I = 1 the potential is 

A detailed numerical study using surfaces of section and properties of periodic orbits for 
the entire range of (I strongly indicates that there are no invariants for HI, so the motion 
is completely chaotic. This result presents problems for the semiclassical quantisation of 
gauge fields. 

1. Introduction 

A conservative dynamical system with Hamiltonian of the form 

~ ( r ,  p )  = $P P + V ( r ) ,  ( r = X 1 , . . . 7 x 1 1 ; p = ~ 1 , . . . , ~ n ) ,  (1.1) 

V(Ar)  = AkV(r ) ,  k # O ,  (1.2) 

where 

is a homogeneous potential of degree k,  exhibits mechanical similarity (Landau and 
Lifshitz 1969). Corresponding to any motion of energy E # 0, there is a similar motion 
for all other energies of the same sign. The properties of the motion for any positive 
energy E can be determined by simple scaling from the properties of the motion on 
the energy shell E = 1. 

For convenience we sometimes describe the system as a particle of unit mass 
confined to the x-y plane and moving in the potential V ( x ,  y ) ,  where x and y are 
rectangular configuration coordinates. 

Many important dynamical systems can be brought into this form. The simplest 
of these that can exhibit irregular or chaotic motion are the systems of two degrees 
of freedom with quartic potentials. If we suppose in addition that the systems are 
symmetric for reflections about two perpendicular axes, then we can choose configur- 
ation coordinates so that the Hamiltonian has the form 

0305-4470/84/040801+ 13$02.25 0 1984 The Institute of Physics 

(1.3) 
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If the (x, y) axes are rotated by 45" to become (6, 77) then (1.3) transforms to  

H&(5,77,P*,PJ=h7:+P3+ Vh(5,rl) 

vb (5,771 = i ( S 4  + s4) - M ( 6  - 7714 + ( 6  + d41, 
where 

(1.4) 

and 0 s a s 1, so that at a = 0 the system is separable into two independent quartic 
oscillators. The motion is completely regular and always confined to invariant tori. 

For a = 1 the Hamiltonian has the form 

H l ( 4  Y , P x , P y ) = t ( P Z x + P 2 y + X 2 Y 2 ) .  (1.5) 

This is a particularly interesting system, and the principal object of our study. Its 
elementary properties are summarised in § 2, and in addition to its intrinsic interest, 
it has been suggested as a very simplified zero-dimensional model of the classical 
Yang-Mills field. 

For this reason it has been studied numerically and no evidence of regular motion 
has been found (Martinyan et a1 1981). 

We have carried out a systematic search for signs of regular motion in this system, 
by studying the one-parameter set of Hamiltonians (1.3) and equivalently (1.4) and 
then following the fate of the regular regions of phase space as a tends to 1. Our 
investigations strongly suggest that there is no regular region and that the motion is 
always irregular except for special orbits, like the periodic orbits that form a set of 
measure zero. 

No satisfactory and practical means is known of using semiclassical mechanics to  
determine the energy levels of large irregular or chaotic regions of phase space. This 
suggests, though of course it does not prove, that the same might also be true of the 
Yang-Mills field. 

2. Motion in a r2y2/2 potential 

The contours of this potential are illustrated in figure l (d ) .  At any positive energy 
there are four channels down which a particle can pass in the neighbourhoods of the 
positive and negative x and y axes. If the particle moves along either axis, it escapes 
to infinity. 

But this motion is exceptional. If the particle goes down a channel along any other 
orbit, we can determine what happens approximately by using the principle of adiabatic 
invariance. Suppose for example that the particle moves into the positive x channel, 
and consider the motion in the y direction. It can be represented by the Hamiltonian 

H y ( Y , P y )  =fb: + X 2 Y 2 ) .  (2.1) 

If x is considered as a parameter then this represents a linear oscillator of angular 

Far down the channel, the relative change in x over one period of this motion is 
frequency w y  = x. 

small. so the action 

I y  = E y / w y  = E y / x  (2.2) 

is an adiabatic invariant. The effective Hamiltonian for the mean motion along the 
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Figure 1. Depicts the evolution with increasing a of the potential contour in the Hamil- 
tonian system of (1.4).  ( a ) ,  ( b ) ,  (c ) ,  ( d )  respectively represent the potential at a =0,0 .25 ,  
9.7, 1.0. 

channel is then 

H y  ( x ,  p x )  = t p f  + I+ (2.3) 
As the particle moves into the channel, it loses energy from the x motion into the 

y motion, and is reflected back towards the origin when 

x = E / I ,  (2.4) 
where E is the total energy. The mechanism is similar to that of a magnetic bottle 
for charged particles. 

However, the volume of phase space down any channel diverges logarithmically, 
so the statistics of the motion is unusual. There can be no ergodic behaviour in the 
usual sense, because although the particle is eventually reflected, an attempt to explore 
the whole of phase space available to it results on average in a higher and higher 
proportion spent in the channels by comparison with the region around the origin as 
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the motion continues, despite the fact that it continually returns to  this central region. 
In practice this behaviour causes difficulties for the numerical integrations, for long 
periods spent in the channels teach us little about the overall nature of the motion. 

In the region around the origin, the potential has four convex reflecting hills between 
the channels and there are various types of symmetric periodic orbits between them. 
For example, there is motion in a straight line through the origin between opposite 
hills, for which the motion is obviously unstable. Furthermore, preliminary numerical 
integrations by Martinyan er a1 (1981) have failed to find any stable periodic orbits 
or invariant tori for this system. Their apparent absence suggests that there may be 
no regular motion. However, the regions which can contain regular motion can be 
very small (Contopolous 1970), and such regions have been found by studying the 
dependence of the regular orbits upon a parameter. Usually this parameter has been 
the energy, but in the case of the x2y2 /2  potential the energy parameter changes only 
the scale of the motion, it does not affect its character. So in this case we vary the 
parameter a of the equations (1.3) and (1.4), for fixed energy E. 

When a = O  the system is integrable and the whole of the phase space is regular. 
As a increases, the regular region breaks up into smaller regular regions and irregular 
regions. We continue following the regular regions with increasing a to determine if 
they exist in the x2y2 /2  potential, where a = 1. 

3. Techniques and formalism 

Here we describe two methods to distinguish regular and irregular motion. Both of 
these involve considering the surface of section, defined by keeping one configuration 
coordinate equal to zero and its canonically conjugate momentum greater than zero. 
With the (1.3) and (1.4) forms of the parametrisation, the surfaces of section we take 
are respectively 

(3 . l a )  

(3.16) 

In addition we consider the area preserving maps T,, T,, defined on (3 . la ) ,  (3.16) 
respectively, and generated by the Hamiltonian phase flow from these surfaces to 
themselves. As the discussion in the rest of this section applies equally to (3 . la )  and 
(3.16) we consider the general surface of section S and the corresponding area 
preserving map T. 

The first method of investigation, originally suggested by Poincark, and explained 
in detail by Berry (1978), H6non and Heiles (1963), Helleman (1980) and others, is 
to consider the repeated action of T upon an initial point in the surface of section. If 
after a sufficient number of iterates, the resulting points form a closed curve, called 
an invariant curve, the trajectory corresponding to them lies on an invariant torus or 
KAM surface. If ,  instead, these points are dense in a two-dimensional area in the plane 
then the trajectory corresponding to them is irregular. 

This method provides an overall picture of the motion, but is unsuitable for 
investigating small regular regions of phase space. For such investigations, it is better 
to study the stability of periodic orbits following Greene (1979). 

Suppose that the periodic orbit Zo( r) has K distinct intersections with the surface 
of section S, one of which we call 0. Then we first calculate the 2 X 2 matrix M, which 
is the linearisation of TK about 0. 
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The residue, R ,  is defined in terms of the matrix M by the relation 

R =$(2-Tr M )  (3.2) 

where Tr M is the trace of M. 
If 0 < R < 1,  there are closed invariant curves immediately surrounding the fixed 

points corresponding to Zo(t) in the surface of section. All these points are elliptic 
fixed points and Zo(t) is stable, as trajectories initially close to it remain bound to it 
for all time. 

If, however, R < O  or R > 1, then these points are hyperbolic fixed points and the 
trajectory is unstable. The cases of equality, R = 0 ,  1, are primarily of interest as 
defining a boundary between the other cases. 

We have established two methods of investigating the structure of phase space; 
the first one is suitable for investigating the macroscopic structure, and the second for 
investigating the microscopic structure. In later sections we describe how these two 
methods are applied to the quartic potentials of the introduction. 
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4. Classification of periodic orbits 

Periodic orbits must be found and classified before they can be used successfully to 
determine the structure of phase space. The choice of the ones to be studied in this 
paper arose out of the properties of symmetry of the potential associated with the 
parametrised system (1.4). 

We consider three main types of periodic orbit A, B, C, in detail and note the 
existence of a fourth class D. Orbits of type A have two distinct points along them 
at which p ,  = p ,  = 0. Orbits of types B and C are symmetrical about the diagonal and 
6 axes of figure ( l a ) ,  and type D periodic orbits are invariant when reflected first 
about one coordinate axis and then the other. The sets A, B, C and D are not 
necessarily disjoint, for example, at a = 0 A is a subset of the union of the sets C and 
D. 

Periodic orbits are further categorised by their resonance numbers N, and N,, 
which for an individual orbit are respectively the number of oscillations in the 5 and 
7 directions during one period. For the rest of the paper such orbits will be referred 
to as Ne : N,  periodic orbits. 

We further subdivide the classes A, B, C into sets dependent upon the N, resonance 
numbers of the periodic orbits in them. For example the set AN consists of type A 
periodic orbits with N, equal to N. The sets BN and C N  of types B and C periodic 
orbits respectively are defined in the same fashion. 

To locate periodic orbits belonging to AN we consider TI, the map generated by 
the Hamiltonian phase flow of the points in the surfaie {x: ps = 0) back to itself. 
Then the function P(N)(@o’)  is defined as the 7 component of the momentum of the 
image of a point under TY,  with original coordinates ([‘O’, v ( O ) ,  0,O). Any root of 
P(N’((‘o’) corresponds to the initial condition of a type A periodic orbit with N as its 
N, resonance number. 

With orbits in C N ,  the function P(N)(@O’) is defined to be the 6 component of the 
momentum of the image of a point under T r ,  with original coordinates ([‘O), 0, 0, p : ) ) .  
Tz is the map generated by the Hamiltonian phase-flow from the surface {x: 7 =0} 
back to itself. 

After rotating the configuration coordinate axes so that they become the diagonal 
axes of diagram l (a) ,  the function P ( N ’ ( ~ ( o ) )  is defined in the same way for orbits in 
BN as P(N)( ( (0) )  was defined for orbits in CN. In both cases the roots of P ( N )  are the 
initial conditions of periodic orbits with N as their first resonance numbers. With 
orbits of types A, B and C the function is continuous and differentiable. 

Typically the residue of a fixed point starts at zero when the point is created and 
increases until the point bifurcates to produce another of twice the period when the 
residue passes through 1 (Greene et a1 1981). However, because of the special 
symmetries of the orbits in the classes A, B, C, D the residue of a fixed point behaved 
differently: it increased from zero to one and then decreased, the periodic point 
bifurcating to produce two more stable periodic points of the same period when the 
residue passed through zero. These symmetries can often speed the calculation of the 
residue. Further details are given by Greene (1979), DeVogelaere (1954) and Green 
et a1 (1981). 

5. Surface of section method 

We first apply the surface of section method to the x 2 y 2 / 2  potential, showing the 
macroscopic phase space structure and the necessity of using alternative procedures. 
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The calculations were performed using either a Runge-Kutta or Adams technique. 
The resulting numerical errors were checked by comparing runs made with the same 
initial conditions at different step-lengths. 

At a = 1 we used both the ( 3 . 1 ~ )  and ( 3 . l b )  surface of sections, which at this value 
of a are respectively unbounded and bounded. 

As described in !j 4, we used symmetry to find various classes of periodic orbits in 
the x 2 y 2 / 2  potential, and then looked for regular regions associated with stable periodic 
orbits. 

Twenty sets of initial conditions apparently generated non-periodic irregular trajec- 
tories, each one being qualitatively similar to any other over a sufficient period of 
time. Typically the action of (2.2) was approximately conserved over most of the 
length of an integrated trajectory, showing that much of its motion was down one 
channel or another. Figure 2 exemplifies this. It is the plot of 300 intersections of a 

. . . .  21 ': '. ', . 
I . .  . .  . ,  

... .... *, . _*  . . . . . . . . . .  ;' * \  * 
.. 

-I) -6 -6 -4 -1 0 2 I 6 8 10x10-' 
rl _- .. 

Figure 4. A macroscopic examination of (3. lb)  at a =0.25, showing both regular and 
irregular regions. 

-;o -6 -6 -i -2 0 2 i 6 8 l o x l o - '  
9 

Figure 5. A macroscopic examination of (3.1 b )  at a = 0.5, showing smaller regular regions 
than at a = 0.25. 
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trajectory with the surface of section given by ( 3 . 1 ~ ) .  When the motion is down a 
channel along the y axis, consecutive intersections of the trajectory with the surface 
of section form an open curve of points. All plots of intersections of trajectories with 
the surface of section of (3.lb) showed no such curves, thus indicating that the 
trajectories are irregular. 

Stable periodic orbits are detected at values of a < 1 by investigating regular regions 
existing at these values in the system (1.3) and equivalently (1.4). In addition we 
followed such regions with increasing a to determine the extent of regular motion in 
the x2y2/2 potential. In this work we consider only the (1.4) form of the parametrisa- 
tion with the surface of section (3.lb). 

Consider first the surface of section at a = O .  The system is integrable with all 
motions lying on invariant tori. Figure 3 exemplifies this, showing only concentric 
invariant curves representing rational and irrational tori. At a =0 .25 ,  many of the 
initial conditions which generate invariant curves at a = 0.0 now generate irregular 
ones. A macroscopic view of the surface of section, figure 4, shows both large irregular 
regions and also many of low stochasticity. However, by a = 0.5, most of these with 
the exception of two have dwindled, so that on the macroscopic scale of figure 5 they 
are hardly recognisable without prior knowledge of their existence. At a = 0.8, most 
of the initial conditions which generated invariant curves at a = 0.25 now generate 
irregular ones. Figure 6 shows that there are still two obvious regular regions. These 
are associated with the cusps, RCi, i = 1, 2,  3, 4, of the potential contour in figure 
l (c ) .  But by a =0.93, figure 7 shows that these too have shrunk and there do not 
appear to be other regular regions left. Finally, at a =0.99, we did not observe any 
regular regions. 

The above results show the difficulty of detecting regular motion in the x2y2 /2  
potential, applying the surface of section method. Despite the unsuitability of the 
method to finding small regular regions, it is still useful for investigating the large scale 
structure of phase space for a < 1.  This proved useful in detecting the periodic orbits 
considered in the next section. 

. . .  . .  . .  
. ' ?  .. .. .. . .  . .  . . . '  . _ . .  . .  

. .  , .  . .  
, I . . .  

, \ .  , 
. .; I ( .  ' 

: '. 
, .  

.. , '. .::. , 
. .  

. .  
> '  

Figore 6. A macroscopic examination of ( 3 . l b )  at (I =0.8.  There are two large regular 
regions centred around 1) =0, Pq = k0.3162. 
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Figure 7. A macroscopic examination of (3 .16)  at a = 0.93, showing that no large regular 
regions exist at this parameter value. 

6. Results for periodic orbits 

As described in 8 1, we followed stable periodic orbits of types A, B and C in the 
system (1.4) created at values of a < 1, to seek regular trajectories in this system at 
a = 1 when (1.4) takes the form 

(6.1) 
Initially we considered type A periodic orbits created at a = O .  The residues of 

eight short periodic orbits from each of the sets A,, i = 1, 2, 3, all increased from zero 
up till 1 and then down past zero as (Y was increased from zero with 

H = & p :  + p ; ,  +A(,+ $ ) 2 .  

Q J K  < ~ J L ?  J =  1, 2, 3, K > L z J + l ,  (6.2) 
where K, L are chosen from the eight smallest integers coprime with J. a j L  is the 
value of a at which the J :  L type periodic orbit becomes unstable, that is when the 
value of its residue becomes less than zero. 

Associated with each of the J :  L orbits, L # J + 1, is a value of a, a,,, at which we 
noted a large increase in numerical errors from the integration procedures, whatever 
the interval of integration. In addition, by considering the type A periodic orbits with 
resonance numbers J : J + 1, 1 < J < 9, we found that 

~ L L + I  < ~ K K + I ,  1 s K s L s  9. (6.3) 
Regarding table 1 we see that al2=0.38. Assuming that (6.2), (6.3) hold for all 

type A periodic orbits created at a = 0, we suggest that they all bifurcate at values of 
a < 0.4. The quantity aNM(0)  in table 1 is the root of corresponding to the N :  M 
type A periodic orbit at a = 0. 

Type A periodic orbits with resonance numbers N :  2M are also of type C and 
these bifurcate, usually to produce two more type C orbits of the same period, which 
are not of type A. We consider these bifurcations later when we examine periodic 
orbits created at values of a > 0. Those type A periodic orbits created with resonance 
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Table 1. Values of a, aNM, at which N :  M ,  N + 1 = M, type A periodic orbits created at 
a = 0 become unstable. 

1 : 2  
3 : 4  
4: 5 
5 :6  
617 
718 
8 : 9  
9:  10 

0.38 
0.245 
0.21s 
0.195 
0.175 
0.155 
0.14 
0.125 

0.433 
0.6163 
0.6462 
0.6647 
0.6772 
0.6862 
0.6929 
0.6983 

numbers N : ( 2 M +  l),  N odd and coprime with 2 M +  1, bifurcate to produce two 
periodic orbits of type D which we did not examine in detail, but there are indications 
that these bifurcate before a = 1. 

We consider next stable periodic orbits of types A, B, C created at values of a > 0. 
Such orbits are located by the momentum function P c N ' ;  this has a low gradient and 
a smooth simple structure about roots corresponding to stable periodic orbits, whilst 
most roots in a region with large densities of roots, the gradients of the function about 
these being usually steep, correspond to unstable periodic orbits. For example figure 
8 shows that the function P ( 4 ) ,  defined for class A4 orbits at a = 0.5, possesses regions 
of large root density such as that marked DR, where stable periodic orbits are few 
and difficult to locate, whilst the region marked CR possesses a single root correspond- 
ing to a stable periodic orbit. 

xlo-', TR 
4 

2 

P'L'O 

-2 

-4. 

OR 

Fipre 8. defined for A, at a = 0.5. 

Moreover, stable type B periodic orbits are often found in the largest regular 
regions associated with the system (1.41, at values of a close to 1;  hence we followed 
such orbits to determine the fates of these regions after they became too small to 
locate using the surface of section method. 

We define a parameter R,, where for an individual periodic orbit 

R, = ( a ,  - no)/ (1 - a o )  (6.4) 
where cyo is the value of the parameter at which the periodic orbit is created and a1 
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is the value of the parameter at the first bifurcation. If 0 < R,  < 1 the periodic orbit 
bifurcates at a value of a < 1, if 1 < R, the periodic orbit is stable at a = 1. 

We concentrate on the sets A2, B4 consisting of periodic orbits which are shorter 
than most of those belonging to the higher-order sets Ai, B ,  i > 2, j > 4 respectively. 
Typically the shorter the length of a periodic orbit the larger its interval of stability 
over a will be. For example in table 3,  which shows quantities for orbits in B,, rows 
marked with an asterisk correspond to periodic orbits also in B2 and B,; these have 
larger values of R, and are shorter than the other orbits considered. So it is possible 
to discover the stability characteristics of many periodic orbits of types A and B from 
those of orbits in A2 and B, respectively. 

None of the periodic orbits belonging to A2 and B4 considered in tables 2 and 3 
respectively are stable at a = 1 and thus none of the listed values of R,  are larger than 
1, moreover there are no trends in either sets of R, which could imply that orbits in 
A2 or B4 created at values of a larger than the ones considered will be stable at a = 1. 
Hence as orbits of types A2 and B4 are shorter than most other periodic orbits of 
types A and B respectively, we suggest that most periodic orbits of these types created 
at values of a < 1 bifurcate before a = 1. 

Greene et al (1981) have found that typically periodic orbits in reversible area 
preserving maps lose their stability when the map is perturbed and bifurcate to produce 
a periodic orbit of twice the period or two of the same period. An infinite sequence 
of bifurcations is accomplished, accumulating at a finite value of the parameter, 
sometimes referred to as the accumulation point of the original orbit. 

The observed bifurcations of type B periodic orbits produced more type B periodic 
orbits, so the above analysis suggests that the accumulation points of these orbits are 

Table 2. Values of a, a. and a l ,  at which periodic orbits in A2 are created and destroyed 
respectively. We show also the corresponding values of R, and u Z M (  a(,). This last quantity 
is the root of P(” corresponding to the 2: M periodic orbit at a = 

0.004 0.56 0.03 1 0.56 
0.818 314 0.8222 0.170 07 2 0.022 
0.833 6 0.8545 0.218 55 2 0.126 
0.928 1 0.9372 0.846 41 1 0.127 

Table 3. Values of a, a, and a ,  at which periodic orbits in B4 are created and destroyed 
respectively; also the corresponding values of R, and blM(a0).  The last quantity is the 
root of PC4) corresponding to the 4: M periodic orbit at a = ao. Rows marked with an 
asterisk correspond to periodic orbits also in Bz or B,. 

f f 0  f f l  b 4 M ( a 0 )  M 

0.92 
0.925 7 
0.930 4 
0.979 6 
0.983 94 
0.986 9 
0.989 

0.924 16 
0.930 4 
0.932 2 
0.979 958 
0.984 21 
0.987 12 
0.989 213 

0.031 34 
0.0044 18 
0.158 71 18 
0.0873 68 
0.004 15 156 
0.023 86 
0.013 4 94 

0.52 * 
0.07 * 
0.04 * 
0.01 
0.017 
0.017 
0.019 
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at values of a < 1. However, type A periodic orbits which are of types C or D also, 
bifurcate to produce respectively stable periodic orbits of types C or D, but which are 
not of type A. Thus to gain information about the bifurcations of some type A periodic 
orbits, we examined stable type C periodic orbits created at values of a > 0. We were 
unable to locate sufficient numbers of these to construct a table of quantities, as we 
were able to do with periodic orbits of types B4 and A*. However, the values of R, 
of the type C orbits we did investigate were all less than 0.14. 

A conclusion about the fates of most type C periodic orbits cannot be reached in 
the same way as it was for orbits of types A and B, but the rareness of stable type C 
periodic orbits and the finding that the observed values of R ,  are less than 1 does 
imply that only a few, if any, type C periodic orbits created at values of a < l  are 
stable when a = 1. 

On the basis of the above, we suggest that the accumulation point of any sequence 
of bifurcations which consist of orbits only belonging to the sets A, B or C is at a < 1. 
Greene et a1 (1981) showed that the ratios between successive bifurcations in any 
sequence tended to 8.7. Assuming that such ratios in most of the sequences involved 
in this paper are approximately this value, then the accumulation point of a sequence 
produced by a particular periodic orbit is at a < 1 if the value of R, for this orbit is 
less than 0.14. This we observed always to be true for orbits of types A, B or C 
created at values of a > 0.5. This suggests that even if some of the orbits are not of 
types A,  B or C in a sequence of bifurcations of a periodic orbit, itself one of these 
types, the sequence still has an accumulation point at a s 1. 

By studying stable periodic orbits we have detected much smaller regular regions 
than we were able to using the surface of section technique. Nevertheless all the 
indications are that regular motion disappears before a = 1. 

7. Discussion and conclusions 

We have carried out an exhaustive numerical analysis of the orbits of the systems 
(1.3), using two separate surfaces of section to observe the broad structure of the 
regular and irregular regions and three classes of periodic orbits to follow the fine 
structure of the regular regions as a -P 1. Every calculation is consistent with the 
conclusions that the motion of a particle in the potential $ x 2 y 2  is irregular everywhere 
except for a set of measure zero. 

This potential may be considered as a very reduced model of a Yang-Mills field. 
Since there is no known practical method for the semiclassical quantisation of irregular 
motion, the same might be true of such fields. 
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